Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Angiotensin II, through stimulation of AT(1) receptors, not only controls blood pressure but also modulates cerebrovascular flow. We sought to determine whether selective AT(1) antagonists could be therapeutically advantageous in brain ischemia during chronic hypertension. METHODS We pretreated spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto controls with the AT(1) antagonist candesartan (CV-11974), 0.5 mg/kg per day, for 3 to 14 days, via subcutaneously implanted osmotic minipumps. We analyzed cerebral blood flow by laser-Doppler flowmetry, cerebral stroke in SHR after occlusion of the middle cerebral artery with reperfusion, and brain AT(1) receptors by quantitative autoradiography. RESULTS Candesartan treatment normalized blood pressure and the shift toward higher blood pressures at both the upper and lower limits of cerebrovascular autoregulation in SHR. Candesartan pretreatment of SHR for 14 days partially prevented the decrease in blood flow in the marginal zone of ischemia and significantly reduced the volume of total and cortical infarcts after either 1 or 2 hours of middle cerebral artery occlusion with reperfusion, relative to untreated SHR, respectively. This treatment also significantly reduced brain edema after 2 hours of middle cerebral artery occlusion with reperfusion. In SHR, candesartan markedly decreased AT(1) binding in areas inside (nucleus of the solitary tract) and outside (area postrema) the blood-brain barrier and in the middle cerebral artery. CONCLUSIONS Pretreatment with an AT(1) antagonist protected hypertensive rats from brain ischemia by normalizing the cerebral blood flow response, probably through AT(1) receptor blockade in cerebral vessels and in brain areas controlling cerebrovascular flow during stroke.
منابع مشابه
Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...
متن کاملNo effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation.
Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral circulation is uncertain. Hence, the present study investigated the effect on CBF autoregulation of blo...
متن کاملImpairment of cerebellar blood flow autoregulation during cerebral ischemia in spontaneously hypertensive rats.
Participation of the autonomic nervous system in cerebellar autoregulation during supratentorial cerebral ischemia induced by bilateral carotid ligation was studied using 23 spontaneously hypertensive rats. Cerebral and cerebellar blood flows measured by a hydrogen clearance method were evaluated under stepwise hemorrhagic hypotension before and 30 minutes after ligation and after a 30-minute r...
متن کاملAngiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats.
BACKGROUND AND PURPOSE The spontaneously hypertensive rat (SHR) is vulnerable to brain ischemia and stress and exhibits a chronically stimulated brain angiotensin II system, cerebrovascular hypertrophy, and inflammation. Pretreatment with angiotensin II type 1 (AT1) receptor antagonists protects from brain ischemia and from stress and prevents the development of stress-induced gastric ulcers in...
متن کاملAngiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats.
Endothelial dysfunction and inflammation enhance vulnerability to hypertensive brain damage. To explore the participation of Angiotensin II (Ang II) in the mechanism of vulnerability to cerebral ischemia during hypertension, we examined the expression of inflammatory factors and the heat shock protein (HSP) response in cerebral microvessels from spontaneously hypertensive rats and their normote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 31 10 شماره
صفحات -
تاریخ انتشار 2000